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Recently Zhang et al. described an algorithm for the detection of +1 LSB steganography based on the statistics of the amplitudes
of local extrema in the grey-level histogram. Experimental results demonstrated performance comparable or superior to other
state-of-the-art algorithms. In this paper, we describe improvements to this algorithm to (i) reduce the noise associated with
border effects in the histogram,and(ii)extendthe analysisto amplitudesof localextremainthe2D adjacencyhistogram. The new
algorithm, using 10 features derived from the 1D and 2D histograms, also significantly outperforms other state-of-the-art ste-

ganalyzers.

INTRODUCTION

Steganographyis the art of invisible communication.
The term invisible is not linked to the meaning of the
communication, as in cryptographyin which the goal
is to secure communications from an eavesdropper, on
the contrary it refers to hiding the existence of the com-
munication channel itself. On the other side, we refer
to steganalysis as the science which goal is to discover
the presence of secret communication channels (secret
messages) established by steganography.

In this paper we describe a new steganalysis algorithm
which works on images in the pixel domain. To prove
the performances of the proposed scheme, we use a
common steganographic algorithm known as +1 em-
bedding or LSB matching, in which the least signifi-
cant bit of each sample is compared to its
corresponding secret message bit, and the sample is
randomly incremented or decremented if the LSB is not
equal to the message bit. This is a variation on the sim-
pler algorithm of LSB flipping, in which the least sig-
nificant bit of a sample is forced (or flipped) to the
value of the corresponding secret message bit. This
light variation is able to make the +lembedding ex-
tremely less detectable than the classical LSB.

The +1embedding algorithm can be formally described
as follows:

pe+1, ifb+# LSB(p.) and (k> 0 or p. = 0)
ps = { pe— 1, ifb# LSB(p.) and (k < 0 or p. = 255) (1)
De, if b = LSB(p.)
where p_(resp. p )denotes a pixel value in the stego
image (resp. cover image), b is the message bit to be
hidden, and kis an i.i.d. random variable with uniform
distribution on {-1, +1}'. This process can be applied
to all pixels in the image or only for a pseudo-ran-
domly chosen portion, when the embedding rate, p, is
less than one, i.e. the length of the hidden message is
less than the number of pixels in the image.

IMPROVING PREVIOUS WORK ON HISTOGRAM DOMAIN
In [2], the authors noted that +1 embedding steganog-
raphy induces a low-pass filtering of the intensity/
colour histogram h1 of the image. Indeed, it is easy to
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show that, when looking at the intensity histogram,
+1steganography is equivalent to a filtering operation
with the kernel:

[g11-51%]

where p is the embedding rate. This implies that the
histogram of a stego Work contains less high-frequency
power than the histogram of the corresponding cover
image.

Based on this idea, Zhang et al. [1] proposed to observe
what happens in the surrounding of local extrema of
the histogram [1]. Sincex1 embedding is equivalent to
lowpass filtering the intensity histogram, thenthefil-
teringoperationwillreducetheamplitudeoflocalex-
trema(ALE).Thismotivatedthe introduction ofanew
feature,whichis basicallythesumofthe amplitudesoflo-
calextremainthe intensity histogram,as

defined below:

Ai(hy) = 37 [2hy (k) = hy(k — 1) — by (k + 1) 2)
ne&y
where £, C [1,254] is the set of local extrema in the histogram given by:

ke & e (k) —hy(k— 1)) (hy(k) — hy(k+ 1)) > 0. (3)

Experimental results reported in [1] confirmed that the
feature A | is statistically larger for original cover Works
than for stego Works. Moreover, using this feature in
conjunction with a classifier based on Fisher linear dis-
criminant (FLD) [3] analysis, resulted in much better
classification results compared with other state-of-the-
art steganalyzers, such as WAM [4] or HCF-COM [2,
5].

Removing Interferences at the Histogram Borders
Embedding based on Equation (1) introduces a minor
asymmetry: 0-valued pixels will always be changed to
1 if their LSB needs to be modified. Similarly, 255-val-
ued pixels will always be changed to 254. This asym-
metry in the histogram can cause interferences with the
extracted feature in eq. (2). To avoid this problem,
Equation (2) is modified, as follows:

As(hy) = 3 [2hy(k) = hy(k — 1) — hy (k + 1)] )

neé]



where the set of local extrema €7 is now reduced to be
within [3, 252]. In other words, the positions {1, 2, 253,
254} are not considered as potential local extrema. Nev-
ertheless, to account the bound values of the histogram,
the following additional feature is defined:

di(h) = ) [2h(k) —hi(k—1) = hi(k+ 1) )
ke&y

where £ C {1,2,253,254} is a set of local extrema as defined by Equation (3).

CONSIDERING 2D ADJACENCY HISTOGRAMS
Inspired by [5], the analysis of local extrema has been
extended to 2D adjacency histograms, h2 (k, 1), which
tabulates how often each pixel intensity is observed
next to another in the horizontal direction:

hao(k, 1) = [{(.9) € T|p(i) =k, B +1) =1 ©)

where p(i, j) is the pixel value at location (i, j) in the

input image, and Z is a bidimensional index which
runs through all pixel locations in the image. Since ad-
jacent pixels have, in general, close intensity values,
this histogram is sparse off the diagonal. It should be
noted that the histogram defined by Equation (6) can
be slightly modified to obtain 3 other adjacency his-
tograms for other directions (vertical, main diagonal,
and minor diagonal). For clarity we will use the apex
h, v, D, d, respectively for horizontal, vertical, main di-
agonal, minor diagonal, to the adjacency function h, (k,
1) in order to specitfy, if necessary, the kind of adjacency,
otherwise h, (k, 1) is referred to a generic kind of adja-
cency matrix. In particular, we define again the four
kinds of adjacency matrix:

hi(k,l) = ‘{(r’,j) eT|pli.j)=k pli.j+1)= f}‘ %)

|{(.d) € T1p(ig) = k. pli+1,5) =1} ()
{G.d) eTIpld) =k pl+1i+1) =1} ©

‘{{-i,j) eT|pli.j)=k pli+1,j—1) _l}‘ (10)

hy(k,1) =
hl (k1) =

hi(k,1) =

where p(i, j) is the pixel value at location (i, j) in the

input image, and Z is a bidimensional index which
runs through all pixel locations in the image.

Moreover, we can extend previous considerations
about the =1 embedding artefacts on the histogram do-
main by using the adjacency matrix. In this case, by
using +1 embedding with payload p, we obtain a 2-D
low pass filtering with the following kernel:

@ [2a-4] @
-5 -9 [20-9)
@ a9 @

Consequently, it should also be possible to distinguish
between cover and stego Works by examining local
amplitude extrema in the 2D adjacency histogram. The

set of local extrema in an adjacency histogram €, c [0,
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255]? is defined as:

Je € {—1,1}, Vn € N+

sign(ha(p) —ha(p+m) =e D

p=(k,l)€52<:>{

where N_ = {(-1, 0), (1, 0), (0, -1), (O, 1)} is used to
define a cross-shaped neighborhood and h,(-) is the
generical adjacency matrix. However, many of these ex-
trema have a small amplitude and are thus highly sen-
sitive to changes of the cover Work. To achieve higher
stability, this set is further reduced to:
p=(kl)e& & (k1) €& and(lk) €& (12)
In other words, only pairs of extrema symmetrical with
respect to the main diagonal are retained. Empirical
observations have revealed that such extrema have sig-
nificantly higher amplitude and are thus more stable.
The resulting generical feature is defined by,

As(hz) = 3 [4ho(p) = Y ha(p+m)

pPEE neN;

(13)

which is the sum of the amplitude of extrema located
at positions in €.

In addition to eq. 13 feature, empirical experiments
have demonstrated that the sum of all the elements on
the diagonal of a 2D adjacency histogram, defined as
follows:

255

da(hy) = " hy(k, k) (14)
k=0

could also be exploited to improve classification re-
sults. Indeed, =1 steganography decreases the value of
this feature and its variations can be used in the deci-
sion process.

Altogether, the above observations result in a collection
of 10 features features which are listed in Table 1.

Table 1: Table of ALE features

Ay(hy)
di(hp)
A2(h%) (horizontal direction)
As(h%) (vertical direction)
Ag(hf) (main diagonal direction)
As(hg) (minor diagonal direction)
do(h%) (horizontal direction)
dz(h3) (vertical direction)

fg(hf) (main diagonal direction)
0 | d2(h¥) (minor diagonal direction)

-

— D 00 1| DN L B WD =

PERFORMANCES OF ALE

In this Section we describe a number of experiments
that we carried out to investigate the impact of the var-
ious features on classification performance.
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Setup

The experiments were run on a database com-
posed of images originating from three different
sources. Specifically:

¢ 2,375 images from the NRCS Photo Gallery
[6].The photos are of natural scenery, e.g.
landscape, cornfields, etc. There is no indi-
cation of how these photos were acquired.
This database has been previously used in

[5].

¢ 2,375 images captured using 24 different
digital cameras (Canon, Kodak, Nikon,
Olympus and Sony) previously used in [4].
They include photographs of natural land-
scapes, buildings and object details. All im-
ages have been stored in a raw format i.e. the
images have never undergone lossy com-
pression.

¢ 2,375 images from the Corel database [7].
They include images of natural landscapes,
people, animals, instruments, buildings, art-
work, etc. Although there is no indication of
how these images have been acquired, they
are very likely to have been scanned from a
variety of photos and slides. This database
has been previously used in [1].

The above image sets result in a composite data-
base of 7125 images. Where necessary, all im-
ages have been converted to grayscale.
Moreover, a central cropping operation of size
512 x 512 was applied to all images to obtain
images of the same dimension across all three
source databases. Cropping was preferred over
resampling with interpolation, in order to avoid
any interference with the source signal.

The motivation for using more than one source
database is to account for the variability in ste-
ganalyzers’ performances across different data-
bases [8].

Given the composite database, the stego images
are built by using +1 embedding at 0.5 bpp of
payload, thus obtaining the stego database.
Then, for every image ALE features are extracted
and we randomly separated the cover-features
database D, . and stego features database D*, .
into a training set (20% of the database size),
and a test set (the remaining 80% of the data-
base) and we built a ROC curve by using Fisher
Discriminant classifier on a training set and by
projecting all the test feature vectors onto the
trained projection vector u. To apply a cross val-
idation on the obtained results, we repeat 20
times the above procedure with a different ran-
domization of the train and test datasets. At the
end we joined the 20 ROCs by the vertical aver-
aging scheme and we show the average curve
and the minimum and maximum bound of 20
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ROCs.

RESULTS

Since similar results were observed for various embed-
ding rates, we only report classification results for
p=0.5.

Figure 1(a) shows the improvements in classification
resulting from elimination of border effects. The origi-
nal algorithm of Zhang et al. is compared with a system
based on feature 1 of Table 1 (ALE 1), and features 1
and 2 (ALE 1-2). The error bars on each plot indicate
the minimum and maximum values observed during
the 20 cross-validation runs. First of all, we note the
unexpectedly poor performances of all three algo-
rithms, i.e. the ROC curves are very close to the diago-
nal. This is due to the wide variety of images present
in of composite database.

Despite the poor performance of all three algorithms,
the two algorithms based on new ALE features (ALE 1
and ALE 1-2) exhibit a slight improvement in classifi-
cation performances. The system using the first two
ALE features (ALE 1-2) achieves the highest perform-
ances based on area under the ROC curve (AUC), with
a score of 0.59, and is therefore used as a reference in
the next experiment.

Figure 1(b) reports the classification performances
achieved when using ALE features computed from the
2D adjacency histogram. Four sets of ALE features are
investigated:

e ALE 3-6 i.e. the amplitude of the local extrema in
the adjacency histograms,

e ALE7-10 i.e. the amplitude of the diagonal in the
adjacency histograms,

e ALE3-10 i.e. all features from the adjacency his-
tograms,

e ALE1-10 i.e. all features from the intensity his-
togram and the adjacency histograms.

All 4 systems perform at least as well as the refer-
ence classification system considered above (ALE 1-
2). ALE 3-6 features perform significantly better
than ALE 7-10 features. Nevertheless, when these
two sets of features are combined (ALE 3-10), the
resulting steganalyzer outperforms the systems that
rely on a single set of features computed from adja-
cency histograms. However, the best classification
performance is achieved when all ALE features are
combined (ALE 1-10). Compared to the original ste-
ganalyzer [1], the area under the ROC curve (AUC)
value increases from 0.57 to 0.77, which is a signifi-
cant improvement.

As a final sanity check, the final ALE steganalysis
system has been compared to other state-of-the art
steganalyzers, namely WAM [4] and 2D-HCFC [5].
The classification results are reported in Figure 2 and
clearly demonstrated the superior performance of
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the proposed system. Nevertheless, comparing with
Figure 1(a), it looks that claiming that Zhang’s ste-
ganalyzer outperforms WAM and 2D-HCFC was a
bit overstated. This reflects the high variability of
steganalysis systems to the used database.

CONCLUSION

In this work the algorithm of Zhang et al was mod-
ified to deal with (i) border effects associated with
the 1D intensity histogram, and (ii) extended to in-
clude statistics associated the amplitude of local ex-
trema in the 2D adjacency histogram.

Experimental results demonstrated the impact of
eliminating the border effects and very substantial
improvements in classification when features de-
rived from the 2D adjacency histogram were also in-
cluded. Using the area under the ROC curve as a
figure of merit, the new ALE algorithm improved
performance from 0.59 to 0.77. Moreover, the pro-
posed steganalysis system proved to outperform
other state-of-the-art steganalyzers such as WAM [4]
and 2D-HCFC [5].

Even though ALE seems to be have very well, anap-
propriate comparison procedures hould be designed to
compare ALE behavior against state-of-art classifiers.
Specifically, we should investigate as future work how
ALE performance vary by changing the experimental
conditions by changing both the image databaseand
the payload. Due to the importance of experimental
settings and comparison with other steganalyzers like-
WAM and 2D-HCFC, we willinvestigate the ALE per-
formance and comparisonin the next chapter.
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